On Chapter 7 of Laws of Form

Naip Moro
July 2017

1 Introduction

In chapter 7 of Laws of Form Spencer-Brown extends the scope of his basic
equations to expressions with any finite number of variables. Some of his ar-
guments, when he provides them, are rigorous; others are mere sketches, and
some possible generalizations are left unmentioned. This paper will present fully
rigorous proofs of the propositions.

Below is a list of axioms and theorems referenced in subsequent proofs:
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2 General theorems

Spencer-Brown begins the chapter by sketching an inductive generalization of
J2. Here is the proof in full.

Theorem (J2%).
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Proof. The proof proceeds by induction on n. The base case is J2, where n = 2.
Let the induction hypothesis (J2h) be:
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The induction step:
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Alternate proof. A very similar and equally short proof, using the same induc-
tion hypothesis as above. The induction step:
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Before continuing, I prove a useful generalization of corollary J2.1.

Theorem (J2.1%).
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Spencer-Brown states the generalizations of C8 and C9 but omits the proofs,
merely noting that they are similar to J2*.

Theorem (C8%*).
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Proof. The proof proceeds by induction on n. The base case is C8, where n = 2.
Let the induction hypothesis (C8h) be:
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The induction step:
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J2.1* allows for a quicker direct proof.

Alternate proof.
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Theorem (C9%).
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Next we prove a generalizion of C2.

Theorem (C2%*).
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Proof. The proof proceeds by induction on n. The base case is C2, where n = 1.
Let the induction hypothesis be:
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Substitute a,4+1bl a,, for a, . The induction step then follows immediately:

Gn41bl anbl ... ag‘al b= an1bl anl ... ag‘al

b

O

Spencer-Brown does not mention a generalized C7. Here is one possible
version.

Theorem (C7*). Let n be a positive even number. Then for all such n the
following pair of equations holds:
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Proof. Let equation (i) be the induction hypothesis. The base case is the iden-

tity a all= a a1l , where n = 2. Now substitute a, 41! a,, for a,,. Then,
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proving the implication from (i) to (%). In equation (i¢) substitute a, a2l ani1
for an+1. Then,
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proving (i) for the succeeding even number. This proves the proposition for all
n > 2, and hence for all echelons of depth greater than or equal to 2. O

Theorem (T14). Any expression can be reduced to an equivalent expression
not more than two crosses deep. Specifically, any expression E is equivalent

tom bl‘ a‘ bg‘ m bn‘ E‘ a‘ m d where a;, b;, c;,d are composed (at
most) of juxtapositions of variables and the two constants, | and

Proof. Repeated applications of C7* to any expression demonstrates the theo-
rem. Spencer-Brown uses C7 (not having proven a generalization), but it comes
to the same thing. O

The final theorem follows Spencer-Brown closely.

Theorem (T15). Given any expression E and any variable v, E can be reduced
to an equivalent expression containing not more than two appearances of v.

Proof. In the case where v is not in E, the theorem is trivially true, since

E =v|v| E by J1. So let us suppose that v appears in E. Using C7* as many
times as necessary, we rewrite E:
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where a;, b;, ¢;, and d are expressions free of v. Then, by n applications of C8.1,
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