Naip Moro

July 2017

1 Introduction

In chapter 7 of *Laws of Form* Spencer-Brown extends the scope of his basic equations to expressions with any finite number of variables. Some of his arguments, when he provides them, are rigorous; others are mere sketches, and some possible generalizations are left unmentioned. This paper will present fully rigorous proofs of the propositions.

Below is a list of axioms and theorems referenced in subsequent proofs:

$$\overline{pr} |\overline{qr}| = \overline{p} |\overline{q}| r \tag{J2}$$

$$pr | \overline{qr} = \overline{p} | \overline{q} | r | \tag{J2.1}$$

$$a = a \tag{C1}$$

$$\begin{array}{c} ab | b = a | b \\ \hline \end{array} \tag{C2}$$

$$a|b|c| = ac|b|c| \tag{C7}$$

$$\overrightarrow{a} \overrightarrow{br} \overrightarrow{cr} = \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \overrightarrow{a} \overrightarrow{r}$$
(C8)

$$\overrightarrow{a|r|}\overrightarrow{b|r|}\overrightarrow{x|r}\overrightarrow{y|r|} = \overrightarrow{r|ab}\overrightarrow{rxy}$$
(C9)

$$\overline{\overline{a|r|}} \overline{\overline{x|r|}} = \overline{\overline{r|a|rx|}}$$
(C9.1)

2 General theorems

Spencer-Brown begins the chapter by sketching an inductive generalization of J2. Here is the proof in full.

Theorem (J2*).

$$\overline{\overline{a_1}} \overline{a_2} \dots \overline{a_n} r = \overline{\overline{a_1 r}} \overline{a_2 r} \dots \overline{a_n r}$$

Proof. The proof proceeds by induction on n. The base case is J2, where n = 2. Let the induction hypothesis (J2h) be:

$$\overline{a_1}$$
 $\overline{a_2}$... $\overline{a_n}$ $r = \overline{a_1 r}$ $\overline{a_2 r}$... $\overline{a_n r}$

The induction step:

$$\overline{a_1} \overline{a_2} \dots \overline{a_n} \overline{a_{n+1}} r$$

$$= \overline{\overline{a_1} \overline{a_2} \dots \overline{a_n}} \overline{a_{n+1}} r$$
(C1)

$$= \overline{a_1} \overline{a_2} \dots \overline{a_n} |r| \overline{a_{n+1}r}|$$
(J2)

$$= \overline{\overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r}} \left\| \overline{a_{n+1} r} \right\|$$
(J2h)

$$= \overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r} \overline{a_{n+1} r} |$$
(C1)

Alternate proof. A very similar and equally short proof, using the same induction hypothesis as above. The induction step:

$$\begin{array}{c}
\overline{a_{1}} \\
\overline{a_{2}} \\
\ldots \\
\overline{a_{n}} \\
\overline{a_{2}} \\
\ldots \\
\overline{a_{n}} \\
\overline{a_{n+1}} \\
\end{array} \\
r$$
(C1)

$$= \underline{\overline{a_1r} \ \overline{a_2r} \ \dots \ \overline{a_n} \ \overline{a_{n+1}} \ r}$$
(J2h)

$$= \overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r} \overline{a_{n+1} r} |||$$
(J2)

$$= \overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r} \overline{a_{n+1} r} |$$
(C1)

Before continuing, I prove a useful generalization of corollary J2.1.

Theorem (J2.1*).

$$\overline{a_1r} \ \overline{a_2r} \ \dots \ \overline{a_nr} = \overline{\overline{a_1} \ \overline{a_2} \ \dots \ \overline{a_n}} r$$

Proof.

$$\overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r}$$

$$= \overline{\overline{a_1 r} \overline{a_2 r} \dots \overline{a_n r}}$$
(C1)

$$= \overline{a_1} a_2 \dots a_n |r| \tag{J2*}$$

Spencer-Brown states the generalizations of C8 and C9 but omits the proofs, merely noting that they are similar to $J2^*$.

Theorem (C8*).

$$\overline{a} \overline{b_1 r} \overline{b_2 r} \dots \overline{b_n r} = \overline{a} \overline{b_1} \overline{b_2} \dots \overline{b_n} |\overline{a} \overline{r}|$$

Proof. The proof proceeds by induction on n. The base case is C8, where n = 2. Let the induction hypothesis (C8h) be:

$$\overline{a} \overline{b_1 r} \overline{b_2 r} \dots \overline{b_n r} = \overline{a} \overline{b_1} \overline{b_2} \dots \overline{b_n} \overline{a} \overline{r}$$

The induction step:

$$\overline{a} \overline{b_1 r} \overline{b_2 r} \dots \overline{b_n r} \overline{b_{n+1} r}$$

$$= \overline{\overline{a}} \overline{\overline{b_1 r}} \overline{\overline{b_2 r}} \dots \overline{\overline{b_n r}} \overline{\overline{b_{n+1} r}}$$

$$= \overline{\overline{a}} \overline{\overline{b_1 r}} \overline{\overline{b_2 r}} \dots \overline{\overline{b_n b_{n+1} r}}$$
(C1)
(C3)
(C3)
(C3)

$$= \frac{a|b_1r|||b_2|\dots b_n|b_{n+1}||a|b_1r|||r||}{\overline{b_2}|\dots \overline{b_n}|\overline{b_{n+1}}||\overline{r}||}$$
(C8h)
$$= \frac{\overline{b_2}|\dots \overline{b_n}|\overline{b_{n+1}}||\overline{r}||\overline{a}|\overline{b_1r}|||}{\overline{a}|\overline{b_1r}|||}$$
(J2.1)

$$= \overline{\overline{b_2} \dots \overline{b_n} \overline{b_{n+1}}} r \overline{a} \overline{b_1 r}$$
 (C1 twice)

$$= \overline{\overline{b_2} \dots \overline{b_n} \overline{b_{n+1}}} \overline{b_1} r \overline{a}$$
(J2.1)

$$= \overline{\overline{b_1}} \overline{b_2} \dots \overline{b_n} \overline{b_{n+1}} r |\overline{a}|$$
(C1)

$$= \overline{b_1} \overline{b_2} \dots \overline{b_n} \overline{b_{n+1}} \overline{r} \| \overline{a} \|$$
(C1)

$$= \overline{a|b_1|b_2|\dots b_n|\overline{b_{n+1}}|} \overline{a|r|}$$
(J2)

$$= \overline{a} |b_1| |b_2| \dots |b_n| |b_{n+1}| |\overline{a}| \overline{r}|$$
(C1)

 $\mathrm{J2.1}^*$ allows for a quicker direct proof.

=

=

Alternate proof.

$$\overline{a} \overline{b_1 r} \overline{b_2 r} \dots \overline{b_n r}$$

$$= \overline{a} \overline{\overline{b_1} \overline{b_2} \dots \overline{b_n} r}$$
(J2.1*)

$$= \overline{a} \overline{b_1} \overline{b_2} \dots \overline{b_n} \overline{r}$$
(C1)

$$= \overline{\overline{a} | \overline{b_1} | \overline{b_2} | \dots \overline{b_n} |} \overline{\overline{a} | \overline{r} |}$$
(J2)

$$= \overline{a} \overline{b_1} \overline{b_2} \dots \overline{b_n} || \overline{a} \overline{r} ||$$
(C1)

Theorem (C9*).

$$\overline{\overline{a_1 | r|}} \overline{\overline{a_2 | r|}} \dots \overline{\overline{a_n | r|}} \overline{\overline{x_1 | r|}} \overline{\overline{x_2 | r|}} \dots \overline{\overline{x_m | r|}}$$
$$= \overline{\overline{r}} \overline{a_1 a_2 \dots a_n} \overline{\overline{rx_1 x_2 \dots x_m}}$$

Proof.

$$\overline{a_{1} | r|} \overline{a_{2} | r|} \dots \overline{a_{n} | r|} \overline{\overline{x_{1} | r|}} \overline{\overline{x_{2} | r|}} \dots \overline{\overline{x_{m} | r|}}$$

$$= \overline{\overline{a_{1} | \overline{a_{2} | \dots \overline{a_{n}} | r|}} \overline{\overline{x_{1} | \overline{x_{2} | \dots \overline{x_{m}} | r|}}$$

$$(J2.1^{*} twice)$$

$$= \overline{\overline{a_{1} a_{2} \dots a_{n} | r|} \overline{\overline{x_{1} x_{2} \dots x_{m} | r|}}$$

$$(C1 n+m times)$$

$$= \overline{r | a_{1} a_{2} \dots a_{n} | \overline{rx_{1} x_{2} \dots x_{m} | r|}}$$

$$(C9.1)$$

Next we prove a generalizion of C2.

Theorem $(C2^*)$.

$$\boxed{\boxed{a_n b} \dots a_2} a_1 b = \boxed{\boxed{a_n} \dots a_2} a_1 b$$

Proof. The proof proceeds by induction on n. The base case is C2, where n = 1. Let the induction hypothesis be:

$$\boxed{\boxed{a_n b} \dots a_2} a_1 b = \boxed{\boxed{a_n} \dots a_2} a_1 b$$

Substitute $\overline{a_{n+1}b} \mid a_n$ for a_n . The induction step then follows immediately:

$$\boxed{\boxed{a_{n+1}b} \ a_n b} \dots \ a_2 \ a_1 \ b = \boxed{\boxed{a_{n+1}b} \ a_n} \dots \ a_2 \ a_1 \ b$$

Spencer-Brown does not mention a generalized C7. Here is one possible version.

Theorem (C7*). Let n be a positive even number. Then for all such n the following pair of equations holds:

(i)
$$\overline{a_n} \dots a_2 a_1 = \overline{a_n} a_{n-1} \dots a_3 a_1 \dots \overline{a_4} a_3 a_1 \overline{a_2} a_1$$

(ii) $\overline{a_{n+1}} a_n \dots a_2 a_1 = \overline{a_{n+1}} a_{n-1} \dots a_3 a_1 \overline{a_n} a_{n-1} \dots a_3 a_1 \dots \overline{a_4} a_3 a_1 \overline{a_2} a_1$

Proof. Let equation (i) be the induction hypothesis. The base case is the identity $\overline{a_2} |a_1| = \overline{a_2} |a_1|$, where n = 2. Now substitute $\overline{a_{n+1}} |a_n|$ for a_n . Then,

$$\begin{array}{c}
\hline \hline a_{n+1} \ a_n \ \dots \ a_2 \ a_1 \\
= \ \hline a_{n+1} \ a_n \ a_{n-1} \dots \ a_3 a_1 \\
= \ \hline a_{n+1} \ a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_3 a_1 \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \dots \ a_{n-1} \\
\hline a_n \ a_{n-1} \dots \ a_{n-1} \dots$$

proving the implication from (i) to (ii). In equation (ii) substitute $a_{n+2} |a_{n+1}|$ for a_{n+1} . Then,

$$\overline{\overline{a_{n+2}} a_{n+1}} \dots a_2 a_1 = \overline{a_{n+2}} a_{n+1} \dots a_3 a_1 \dots \overline{a_4} a_3 a_1 \overline{a_2} a_1$$
(ii)

proving (i) for the succeeding even number. This proves the proposition for all $n \ge 2$, and hence for all echelons of depth greater than or equal to 2.

Theorem (T14). Any expression can be reduced to an equivalent expression not more than two crosses deep. Specifically, any expression E is equivalent to $\overline{a_1} \ b_1 \ \overline{a_2} \ b_2 \ \dots \ \overline{a_n} \ b_n \ \overline{c_1} \ \overline{c_2} \ \dots \ \overline{c_m} \ d$ where a_i, b_i, c_i, d are composed (at most) of juxtapositions of variables and the two constants, \neg and \neg .

Proof. Repeated applications of $C7^*$ to any expression demonstrates the theorem. Spencer-Brown uses C7 (not having proven a generalization), but it comes to the same thing.

The final theorem follows Spencer-Brown closely.

Theorem (T15). Given any expression E and any variable v, E can be reduced to an equivalent expression containing not more than two appearances of v.

Proof. In the case where v is not in E, the theorem is trivially true, since $E = \overline{v|v|} E$ by **J1**. So let us suppose that v appears in E. Using **C7*** as many times as necessary, we rewrite E:

$$E = \overline{va_1} \ b_1 \ \overline{va_2} \ b_2 \ \dots \ \overline{va_n} \ b_n \ \overline{vc_1} \ \overline{vc_2} \ \dots \ \overline{vc_m} \ d$$

where a_i, b_i, c_i , and d are expressions free of v. Then, by n applications of **C8.1**,

$$E = \overrightarrow{v} \begin{vmatrix} b_1 & \overrightarrow{a_1} & b_1 & \overrightarrow{v} & b_2 & \overrightarrow{a_2} & b_2 & \cdots & \overrightarrow{v} & b_n & \overrightarrow{a_n} & b_n & \overrightarrow{vc_1} & \overrightarrow{vc_2} & \cdots & \overrightarrow{vc_m} & d \\ = \overrightarrow{v} \begin{vmatrix} b_1 & \overrightarrow{v} & b_2 & \cdots & \overrightarrow{v} & b_n & \overrightarrow{vc_1} & \overrightarrow{vc_2} & \cdots & \overrightarrow{vc_m} & f \\ (\text{where } f = \overrightarrow{a_1} & b_1 & \overrightarrow{a_2} & b_2 & \cdots & \overrightarrow{a_n} & b_n & d \text{ is free of } v.) \\ = \overline{\overrightarrow{b_1} & \overrightarrow{b_2} & \cdots & \overrightarrow{b_n}} \begin{vmatrix} \overrightarrow{v} & \overrightarrow{c_1} & \overrightarrow{c_2} & \cdots & \overrightarrow{c_m} & v \\ \hline{c_1} & \overrightarrow{c_2} & \cdots & \overrightarrow{c_m}} \begin{vmatrix} v & f & (J2.1^* \text{ twice}) \end{vmatrix}$$