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1 Introduction

In chapter 7 of Laws of Form Spencer-Brown extends the scope of his basic
equations to expressions with any finite number of variables. Some of his ar-
guments, when he provides them, are rigorous; others are mere sketches, and
some possible generalizations are left unmentioned. This paper will present fully
rigorous proofs of the propositions.

Below is a list of axioms and theorems referenced in subsequent proofs:

pr qr = p q r (J2)

pr qr = p q r (J2.1)

a = a (C1)

ab b = a b (C2)

a b c = ac b c (C7)

a br cr = a b c a r (C8)

a r b r x r y r = r ab rxy (C9)

a r x r = r a rx (C9.1)

2 General theorems

Spencer-Brown begins the chapter by sketching an inductive generalization of
J2. Here is the proof in full.

Theorem (J2*).

a1 a2 . . . an r = a1r a2r . . . anr

Proof. The proof proceeds by induction on n. The base case is J2, where n = 2.
Let the induction hypothesis (J2h) be:

a1 a2 . . . an r = a1r a2r . . . anr
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The induction step:

a1 a2 . . . an an+1 r

= a1 a2 . . . an an+1 r (C1)

= a1 a2 . . . an r an+1r (J2)

= a1r a2r . . . anr an+1r (J2h)

= a1r a2r . . . anr an+1r (C1)

Alternate proof. A very similar and equally short proof, using the same induc-
tion hypothesis as above. The induction step:

a1 a2 . . . an an+1 r

= a1 a2 . . . an an+1 r (C1)

= a1r a2r . . . an an+1 r (J2h)

= a1r a2r . . . anr an+1r (J2)

= a1r a2r . . . anr an+1r (C1)

Before continuing, I prove a useful generalization of corollary J2.1.

Theorem (J2.1*).

a1r a2r . . . anr = a1 a2 . . . an r

Proof.

a1r a2r . . . anr

= a1r a2r . . . anr (C1)

= a1 a2 . . . an r (J2*)

Spencer-Brown states the generalizations of C8 and C9 but omits the proofs,
merely noting that they are similar to J2*.

Theorem (C8*).

a b1r b2r . . . bnr = a b1 b2 . . . bn a r
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Proof. The proof proceeds by induction on n. The base case is C8, where n = 2.
Let the induction hypothesis (C8h) be:

a b1r b2r . . . bnr = a b1 b2 . . . bn a r

The induction step:

a b1r b2r . . . bnr bn+1r

= a b1r b2r . . . bnr bn+1r (C1)

= a b1r b2 . . . bn bn+1 a b1r r (C8h)

= b2 . . . bn bn+1 r a b1r (J2.1)

= b2 . . . bn bn+1 r a b1r (C1 twice)

= b2 . . . bn bn+1 b1 r a (J2.1)

= b1 b2 . . . bn bn+1 r a (C1)

= b1 b2 . . . bn bn+1 r a (C1)

= a b1 b2 . . . bn bn+1 a r (J2)

= a b1 b2 . . . bn bn+1 a r (C1)

J2.1* allows for a quicker direct proof.

Alternate proof.

a b1r b2r . . . bnr

= a b1 b2 . . . bn r (J2.1*)

= a b1 b2 . . . bn r (C1)

= a b1 b2 . . . bn a r (J2)

= a b1 b2 . . . bn a r (C1)
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Theorem (C9*).

a1 r a2 r . . . an r x1 r x2 r . . . xm r

= r a1a2 . . . an rx1x2 . . . xm

Proof.

a1 r a2 r . . . an r x1 r x2 r . . . xm r

= a1 a2 . . . an r x1 x2 . . . xm r (J2.1* twice)

= a1a2 . . . an r x1x2 . . . xm r (C1 n+m times)

= r a1a2 . . . an rx1x2 . . . xm (C9.1)

Next we prove a generalizion of C2.

Theorem (C2*).

anb . . . a2 a1 b = an . . . a2 a1 b

Proof. The proof proceeds by induction on n. The base case is C2, where n = 1.
Let the induction hypothesis be:

anb . . . a2 a1 b = an . . . a2 a1 b

Substitute an+1b an for an . The induction step then follows immediately:

an+1b anb . . . a2 a1 b = an+1b an . . . a2 a1 b

Spencer-Brown does not mention a generalized C7. Here is one possible
version.

Theorem (C7*). Let n be a positive even number. Then for all such n the
following pair of equations holds:

(i) an . . . a2 a1 = an an−1 . . . a3a1 . . . a4 a3a1 a2 a1

(ii) an+1 an . . . a2 a1 = an+1an−1 . . . a3a1 an an−1 . . . a3a1 . . . a4 a3a1 a2 a1
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Proof. Let equation (i) be the induction hypothesis. The base case is the iden-

tity a2 a1 = a2 a1 , where n = 2. Now substitute an+1 an for an. Then,

an+1 an . . . a2 a1

= an+1 an an−1 . . . a3a1 . . . a4 a3a1 a2 a1 (i)

= an+1an−1 . . . a3a1 an an−1 . . . a3a1 . . . a4 a3a1 a2 a1 (C7)

proving the implication from (i) to (ii). In equation (ii) substitute an+2 an+1

for an+1. Then,

an+2 an+1 . . . a2 a1 = an+2 an+1 . . . a3a1 . . . a4 a3a1 a2 a1 (ii)

proving (i) for the succeeding even number. This proves the proposition for all
n ≥ 2, and hence for all echelons of depth greater than or equal to 2.

Theorem (T14). Any expression can be reduced to an equivalent expression
not more than two crosses deep. Specifically, any expression E is equivalent

to a1 b1 a2 b2 . . . an bn c1 c2 . . . cm d where ai, bi, ci, d are composed (at
most) of juxtapositions of variables and the two constants, and .

Proof. Repeated applications of C7* to any expression demonstrates the theo-
rem. Spencer-Brown uses C7 (not having proven a generalization), but it comes
to the same thing.

The final theorem follows Spencer-Brown closely.

Theorem (T15). Given any expression E and any variable v, E can be reduced
to an equivalent expression containing not more than two appearances of v.

Proof. In the case where v is not in E, the theorem is trivially true, since

E = v v E by J1. So let us suppose that v appears in E. Using C7* as many
times as necessary, we rewrite E:

E = va1 b1 va2 b2 . . . van bn vc1 vc2 . . . vcm d

where ai, bi, ci, and d are expressions free of v. Then, by n applications of C8.1,

E = v b1 a1 b1 v b2 a2 b2 . . . v bn an bn vc1 vc2 . . . vcm d

= v b1 v b2 . . . v bn vc1 vc2 . . . vcm f

(where f = a1 b1 a2 b2 . . . an bn d is free of v.)

= b1 b2 . . . bn v c1 c2 . . . cm v f (J2.1* twice)
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